The Very Long Baseline Neutrino Oscillations Experiment

Presented to FCP05 Neutrino Session

by
Tom Kirk
Brookhaven National Laboratory

Nashville, TN May 23, 2005

Physics Case for the VLBNO Experiment

- All parameters of neutrino oscillations can be measured in <u>one</u> experiment
 - every one of the oscillation parameters is important to particle physics
 - the oscillation parameters contribute to important cosmology questions
 - a n_e appearance experiment is required to determine <u>all</u> the parameters
 - a <u>broadband</u> Super Neutrino Beam at <u>very long distances</u> is the key to success
 - the Very Long Baseline Neutrino Oscillation (VLBNO) Exp. is the best method
- The massive VLBNO detector empowers <u>additional forefront physics</u>
 - a powerful next-generation *Nucleon Decay* search
 - supernova and relic neutrino searches
 - a deep underground detector in the prospective NSF DUSEL is ideal for VLBNO
- ullet The CP-violation parameter $d_{\sf CP}$ is the most difficult number to determine
 - matter effects interact with CP-violation effects
 - the CP-violation phase d_{CP} has distinct effects over the *full 360° range*
 - antineutrino running offers a complementary way to demonstrate CP-violation and may be pursued at a later stage of VLBNO as needed for physics
- The off-axis beam approach requires multiple distances and detectors
 - all experiments will require of order 10 Snowmass years of running
 - multiple detectors and beams will require careful control of systematic errors

Questions About the VLBNO Experiment

Won't Hyper-K + a 4MW J-PARC beam complete all the measurements?

- no, the 295km T2K baseline is too short for the solar term and matter effects
- the off-axis T2K neutrino beam requires at least one other big experiment plus long antineutrino running to determine $d_{\mbox{CP}}$ without ambiguities

Isn't VLBNO much more expensive than other approaches?

- the VLBNO cost is *comparable to or lower* than other less complete methods
- the VLBNO detector can be made in ~100kTon steps, phased over time
- VLBNO plans to share the large Nucleon Decay Detector in NSF's DUSEL

What about the background from p^0 inelastic events in VLBNO?

- sophisticated Monte Carlo simulations with state-of-the-art Super-K pattern recognition and maximum likelihood methods have mitigated this issue

Why not determine CP-violation with antineutrino running?

- antineutrino measurements will require of order 10 Snowmass years of running
- the antineutrino running may be of value to a long-running DUSEL experiment

Isn't the AGS at BNL needed for RHIC and RSVP?

- RHIC runs very compatibly with AGS and RSVP won't use all the available time (RSVP is planned to run for 25 weeks/year for 5 years)
- the neutrino oscillation/nucleon decay experiment could last many years

Electron Neutrino Appearance by Oscillation in Vacuum

The equation for oscillation^a of $n_m \otimes n_e$ neutrinos in vacuum is given by:

$$\begin{split} \mathsf{P}(\mathsf{n_m} \ \mathbb{R} \ \mathsf{n_e} \) &= \mathsf{sin^2}(\mathsf{q_{23}}) \ \mathsf{sin^2}(\mathsf{2q_{13}}) \ \mathsf{sin^2}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \\ &+ \ \, \text{'} \ \mathsf{sin}(\mathsf{2q_{12}}) \ \mathsf{sin}(\mathsf{2q_{13}}) \ \mathsf{sin}(\mathsf{2q_{23}}) \ \mathsf{cos}(\mathsf{q_{13}}) \ \mathsf{x} \\ &\quad \mathsf{sin}(\mathsf{Dm^2_{21}} \ \mathsf{L}/\mathsf{2E_n}) \ \mathsf{x} \ [\ \mathsf{sin}(\mathsf{d_{CP}}) \ \mathsf{sin^2}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \\ &\quad + \ \, \mathsf{cos}(\mathsf{d_{CP}}) \ \mathsf{sin}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \ \mathsf{cos}(\mathsf{Dm^2_{31}} \ \mathsf{L}/\mathsf{4E_n}) \] \\ &\quad + \ \, \mathsf{sin^2}(\mathsf{2q_{12}}) \ \mathsf{cos^2}(\mathsf{q_{13}}) \ \mathsf{cos^2}(\mathsf{q_{23}}) \ \mathsf{sin^2}(\mathsf{Dm^2_{21}} \ \mathsf{L}/\mathsf{4E_n}) \\ &\quad + \ \, \mathsf{matter} \ \mathsf{effects} \ + \ \mathsf{smaller} \ \mathsf{terms} \end{split}$$

$$Dm_{31}^2 \equiv m_3^2 - m_1^2 = Dm_{32}^2 + Dm_{21}^2 \sim Dm_{32}^2$$

What do we learn by contemplating this long algebraic expression?

- simple inspection won't reveal all the many experimental implications
- detailed calculations are needed to clarify the important experimental issues
- key oscillation parameters still to be determined are shown in red
- the known oscillation distance scales in green are exploited by VLBNO

^a W. Marciano, Nuclear Physics B (Proc. Suppl.) 138, (2005) 370-375

Electron Neutrino Appearance by Oscillation in Vacuum

Electron Neutrino Appearance With Matter Effects

The oscillation for $n_m \otimes n_e$, including the *matter effect*, is given approximately by a:

```
\begin{split} \mathsf{P}(n_{m} \; @ \; n_{e} \;) \; @ \; & \mathsf{sin^{2}}(q_{23}) \; \mathsf{sin^{2}}(2q_{13}) \; \mathsf{sin^{2}}((A\text{-}1)D)/(A\text{-}1)^{2} \\ & + a \; 8 \; \mathbf{J_{CP}} \; \mathsf{sin}(D) \; \mathsf{sin}(\mathbf{A}D) \; \mathsf{sin}((1\text{-}\mathbf{A})D) \; / \; (\mathbf{A} \; (1\text{-}\mathbf{A})) \\ & + a \; 8 \; \mathbf{I_{CP}} \; \mathsf{cos}(D) \; \mathsf{sin}(\mathbf{A}D) \; \mathsf{sin}((1\text{-}\mathbf{A})D) \; / \; (\mathbf{A}(1\text{-}\mathbf{A})) \\ & + a^{2} \; \mathsf{cos^{2}}(q_{23}) \; \mathsf{sin^{2}}(2q_{12}) \; \mathsf{sin^{2}}(\mathbf{A}D) \; / \; \mathbf{A^{2}} \\ & \mathbf{J_{CP}} = \; \mathbf{sin}(\mathbf{d_{CP}}) \; \mathsf{cos}(q_{13}) \; \mathsf{sin}(2q_{12}) \; \mathsf{sin}(2q_{13}) \; \mathsf{sin}(2q_{13}) \; / \; 8 \\ & \mathbf{I_{CP}} = \; \mathbf{cos}(\mathbf{d_{CP}}) \; \mathsf{cos}(q_{13}) \; \mathsf{sin}(2q_{12}) \; \mathsf{sin}(2q_{13}) \; \mathsf{sin}(2q_{13}) \; / \; 8 \\ & a = \; \mathsf{Dm^{2}_{21}} \; / \; \mathsf{Dm^{2}_{31}} \; ; \; \; D = \; \mathsf{Dm^{2}_{31}} \; \mathsf{L}/4\mathsf{E_{n}} \; ; \; \; \mathbf{A} = \; 2\mathsf{VE_{n}}/ \; \mathsf{Dm^{2}_{31}} \; ; \; \; \mathsf{Dm^{2}_{31}} \equiv \; \mathsf{m^{2}_{3}} \text{-} \; \mathsf{m^{2}_{1}} \\ & \mathsf{V} = \; \ddot{\mathsf{02}}\mathsf{G_{F}}\mathsf{n_{e}} \; ; \; \; \mathsf{n_{e}} \; \mathsf{is} \; \mathsf{density} \; \mathsf{of} \; \mathsf{electrons} \; \mathsf{along} \; \mathsf{the} \; \mathsf{path} \end{split}
```

This expression separates terms by the the following:

- the first three terms show the effect of sin²(2q₁₃)
- the second and third terms show the effects of CP symmetry
- the J_{CP} term changes sign when calculating anti-neutrinos, n_m $^{\circ}$ n_e
- matter effects come into all terms via the 'A' factors in blue

^a Barger et al., Phys. Rev. D63: 113011 (2001); M. Freund, Phys. Rev. D64: 053003 (2001); Huber et al., Nucl. Phys. B645, 3 (2002); Barger et al. Phys. Rev. D65: 073023 (2002)

Sensitivity to Matter Effect

Electron Neutrino Appearance – CP Phase Sensitivity

BNL ® Rocky Mountains Super Neutrino Beam

Very Long Baseline Neutrino Experiment

- neutrino oscillations result from the factor sin²(Dm₃₂² L / 4E) modulating the n flux for each flavor (here n_m disappearance)
- the oscillation period is directly proportional to distance and inversely proportional to energy
- with a very long baseline actual oscillations are seen in the data as a function of energy
- the multiple-node structure of the very long baseline allows the Dm₃₂² to be precisely measured by a wavelength rather than an amplitude (reducing systematic errors)

1-2 MW Super Neutrino Beam at AGS

 BNL completed October 8, 2004, a Conceptual Design to support a new proposal to DOE to upgrade the AGS to 1-2 MW target power and construct the wide-band *Super Neutrino Beam* as listed in the DOE's "Facilities for the Future of Science" plan of November 2003

3-D Super Neutrino Beam Perspective

Chiaki Yanagisawa – SBU February 28, 2005

Effect of cut on Δ likelihood

No Δlikelihood cut (100% signal retained)

Signal/Background

 v_e^{\downarrow} CC for signal; all $v_{\mu,\tau,e}$ NC, v_e beam for background

Δlikelihood cut (~50% signal retained)

Maximum Likelihood Method

S/B

Effect of cut on likelihood

 ν_e CC for signal ; all $\nu_{\mu,\tau,e}$ NC , ν_e beam for backgrounds CP-45°

Chiaki Yanagisawa – SBU February 28, 2005

Effect of cut on likelihood

 ν_e CC for signal ; all $\nu_{\mu,\tau,e}$ NC , ν_e beam for backgrounds $_{\text{CP-135}^o}$

Chiaki Yanagisawa – SBU February 28, 2005

Comparison of Future Neutrino Oscillations Exps.

<u>Parameter</u>	T2K	T2K2	Reactor	No na	Nona2	VLBNO.
Dm ₃₂ ²	± 4 %	± 4 %	-	± 2 %	± 2 %	± 1%
sin²(2q ₂₃)	±1.5%	± 0.4 %	-	± 0.4 %	± 0.2 %	± 0.5 %
sin²(2q ₁₃) ^a	>0.02	>0.01	>0.01	>0.01	>0.01	>0.01
Dm ₂₁ ² sin(2q ₁₂) b	-	-	-	-	-	12 %
sign of (Dm_{32}^2) c	-	-	Deth vegulte v	possible	yes	yes
measure d_{CP}^{-d}	- (~20°	Both results ne resolve ambigues		~20°	±13°
N-decay gain	x1 (x20	_	_	-	8 x
Detector (Ktons)	50	1000	20	30	30+50	400
Beam Power (MW)	0.74	4.0	14000	0.4	2.0	1.5
Baseline (km)	295 e	295 ^e	1	810 ^e	810 ^e	>2500
Detector Cost (\$M)	exists	~1000	~20	165	+200	400
Beam Cost (\$M)	exists	500	exists	50	1000	400
Ops. Cost (\$M/10 yrs)	500	700	50	500	600	150/500 f

^a detection of $n_m \otimes n_e$, upper limit on or determination of $\sin^2(2q_{13})$

^e beam is 'off-axis' from 0-degree target direction; ^f with/without RHIC operations

Best Bets

^b detection of $n_m \otimes n_e$ appearance, even if $\sin^2(2q_{13}) = 0$; determine q_{23} angle ambiguity

 $^{^{\}text{c}}$ detection of the matter enhancement effect over the entire \mathbf{d}_{CP} angle range

 $^{^{\}rm d}$ measure the CP-violation phase ${\rm d}_{\, \text{CP}}$ in the lepton sector; Nona2 depends on T2K2

Conclusions

- Neutrino Oscillation parameters can be completely determined within the next two decades
- The most effective method is the VLBNO + Wideband Super Beam
- A Megaton-class Water Cerenkov Detector can do this experiment
- The AGS-based Super Neutrino Beam is the best neutrino source
- Combining VLBNO with the *Nucleon Decay Search* in the *NSF DUSEL* is the most science and cost effective plan for the U.S.

Electron Neutrino Appearance by Oscillation in Vacuum

Sensitivity to Matter Effect

Electron Neutrino Appearance – CP Phase Sensitivity

Electron Neutrino Appearance by Oscillation in Vacuum

Sensitivity to Matter Effect

Electron Neutrino Appearance – CP Phase Sensitivity

